ПОТЕНЦІЙНЕ ВИКОРИСТАННЯ НЕЙРОННИХ МЕРЕЖ ДЛЯ ВИЯВЛЕННЯ АНОМАЛІЙ У МЕРЕЖЕВОМУ ТРАФІКУ

Автор(и)

DOI:

https://doi.org/10.30890/2709-1783.2023-26-01-008

Ключові слова:

cybersecurity of an information system, intrusion into an information system, intrusion detection, machine learning, neural network

Анотація

The rapid digitalization of the world has led to various attacks on computer systems and networks, so cybersecurity of networks is an extremely important and relevant component of information security today. In our study, we compare two deep learning mode

Посилання

A Convolutional Neural Network for Network Intrusion Detection System / L. Mohammadpour et al. Barcelona, 24–26 October 2018. 2018. P. 50–55.

LSTM learning with bayesian and gaussian processing for anomaly detection in industrial IoT/ D. Wu et al. IEEE transactions on industrial informatics. 2020. Vol. 16, no. 8. P. 5244–5253. URL: https://doi.org/10.1109/tii.2019.2952917 (date of access: 15.04.2023).

Gradient-based learning applied to document recognition / Y. Lecun et al. Proceedings of the IEEE. 1998. Vol. 86, no. 11. P. 2278–2324. URL: https://doi.org/10.1109/5.726791 (date of access: 15.03.2023).

I. Cvitić, D. Perakovic, B. B. Gupta and K. -K. R. Choo, "Boosting-Based DDoS Detection in Internet of Things Systems," in IEEE Internet of Things Journal, vol. 9, no. 3, pp. 2109-2123, 1 Feb.1, 2022, doi: 10.1109/JIOT.2021.3090909.

Staudemeyer R. C. Applying long short-term memory recurrent neural networks to intrusion detection. South African Computer Journal. 2015. Vol. 56. URL: https://doi.org/10.18489/sacj.v56i1.248 (date of access: 15.04.2023).

Young T., Nammous M. K., Saeed K. Advanced Computing and Systems for Security. Berlin, Germany: Springer; 2019. Natural language processing: speaker, language, and gender identification with LSTM; pp. 143–156.

Опубліковано

2023-04-30

Як цитувати

Гайдур, Г., Гахов, С., & Бригинець, А. (2023). ПОТЕНЦІЙНЕ ВИКОРИСТАННЯ НЕЙРОННИХ МЕРЕЖ ДЛЯ ВИЯВЛЕННЯ АНОМАЛІЙ У МЕРЕЖЕВОМУ ТРАФІКУ. SWorld-Ger Conference Proceedings, 1(gec26-01), 16–19. https://doi.org/10.30890/2709-1783.2023-26-01-008