ANALYSIS OF INFORMATION SECURITY AND THE PRESENCE OF PEOPLE IN THE CONTROLLED AREA BASED ON COMPUTER NETWORK TRAFFIC LISTENING
DOI:
https://doi.org/10.30890/2709-1783.2024-34-00-015Keywords:
information security, controlled area, Wi-Fi network, network traffic listening, channel state information (CSI), RSSI of signal, object detectionAbstract
Service functions of modern operating systems allow passive monitoring ("listening") of computer network traffic without the use of additional tools and additional equipment. Such functions can be used to control information security by detecting the appeReferences
Linux iftop – Listen Network Traffic and Bandwidth. URL: https://www.geeksforgeeks.org/linux-iftop-listen-network-traffic-and-bandwidth/ (Last accessed: 21.08.2024).
Zhu Yi., Zhu Ya., Zhang Z., Zhao B. Y., Zheng H. 60GHz mobile imaging radar. Mobile Computing Systems and Applications (HotMobile'15) : Proc. of the 16th Internat. Workshop, Santa Fe, New Mexico, USA. New York, NY, USA, 2015. P. 75–80. DOI: 10.1145/2699343.2699363.
Тогоєв О. Р. Метод деанонімізації користувачів iOS через протокол AirDrop. Комп’ютерно-інтегровані технології: освіта, наука, виробництво : наук. журн. / Луцьк. нац. техн. ун-т. 2022. Вип. 49. С. 12– 17. DOI: 10.36910/6775-2524-0560-2022-49-02.
Abazorius A. New system allows for high-accuracy, through-wall, 3-D motion tracking. Massachusetts Institute of Technology News : web site. Publ. Dec. 11, 2013. URL: https://news.mit.edu/2013/new-system-allows-for-high-accuracy-through-wall-3-d-motion-tracking-1211 (Last accessed: 23.08.2024).
Ma Y., Zhou G., Wang S. WiFi sensing with channel state information. ACM Computing Surveys. 2019. Vol. 52, no. 3. P. 1–36. DOI: 10.1145/3310194.
Al-ganess M. A. A., Elaziz M. A., Kim S., Ewees A. A., Abbasi A. A., Alhaj Yo. A., Hawbani A. Channel state information from pure communication to sense and track human motion: A survey. Sensors. 2019. Vol. 19, Is. 15, no. 3329. 27 p. DOI: 10.3390/S19153329.
ESP-IDF Programming Guide v5.0.2 documentation. Technical Documents | Espressif Systems. URL: https://docs.espressif.com/projects/esp-idf/en/v5.0.2/esp32/get-started/index.html (Last accessed: 01.08.2024).
Ding J., Wang Y. WiFi CSI-based human activity recognition using Deep Recurrent Neural Network. IEEE Access. 2019. Vol. 7. P. 174257–174269. DOI: 10.1109/ACCESS.2019.2956952 (Last accessed: 01.08.2024).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.