STUDY OF THE CONFIGURATION OF THE NEUROFUZZY NETWORK TO DETERMINE THE DEGREE OF CONFIDENCE IN THE INPLEMENTATION OF A DOS ATTACK
DOI:
https://doi.org/10.30888/2709-2267.2024-25-00-002Keywords:
DoS attack, degree of confidence, NSL-KDD, terms, Gaussian function, error of the first kind, error of the second kindAbstract
As a research method, ANFIS configurations 4-5-12-81-81-1 were used, where 4 is the number of input neurons; 5 – total number of layers; 12 – the number of neurons of the first hidden layer; 81 – the number of neurons of the second hidden layer; 81 – theMetrics
References
Alguliyev R. M., Imamverdiyev Y. N. & Sukhostat L. V. (2018). An improved ensemble approach for DoS attacks detection. Radioelectronics, informatics, upravlins [Radio Electronics, Informatics, Control]. No. 2. pp. 73-82. DOI: 10.15588/1607-3274-2018-2-8
Karpinski М., Shmatko A., Yevseiev S., Jancarczyk D. & Milevskyi S. (2021). Detection of Intrusion Attacks Using Neural Networks. Miznar. nauk.-pract. conf. «Information bezpeka tha information technology», Kharkiv-Odessa [Intl. Scin.-Pract. Conf. Information Security and Information Technologies, Kharkiv-Odesa]. pp. 117-124.
NSL-KDD | Datasets | Research | Canadian Institute for Cybersecurity | UNB. University of New Brunswick | UNB. URL: https://www.unb.ca/cic/datasets/nsl.html
Pakhomova V. & Kovalov R. (2023). Investigation of the possibility of using neurofuzzy network to determine the extent of DoS attack. SworldJournal: Bulgaria. Issue 21. Part 1. pp. 92-98. URL: https://www.sworldjournal.com/index.php/swj/article/view/swj21-01-037
Saied A., Overill R. E. & Radzik T. (2016). Detection of known and unknown DDoS attacks using Artificial Neural Networks. Neurocomputing. Vol. 172. pp. 385-393. URL: https://doi.org/10.1016/j.neucom.2015.04.101
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.