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Abstract. Low cost, the possibility of online monitoring and high sensitivity distinguish the 

method of structural monitoring using Lamb waves from other available methods. Structural 
analysis based on Lamb waves in heterogeneous materials requires fundamental knowledge of the 
behavior of Lamb waves in such materials. This basic knowledge is critical for signal processing in 
determining possible damage that can be detected by the propagating wave. Recently, Lamb wave 
methods have been used to simultaneously survey large areas of composite structures. However, 
such methods are more complex than traditional ultrasonic testing because Lamb waves have 
dispersive characteristics, namely, the wave speed varies depending on the frequency, modes and 
thickness of the plates. This work investigates the propagation characteristics of Lamb waves in 
composites, focusing on group velocity and characteristic wave curves. For symmetric laminates, a 
robust method is proposed by imposing boundary conditions on the mid-plane and top surface to 
separate symmetric and antisymmetric wave modes. The dispersive and anisotropic behavior of 
Lamb waves in two different types of symmetrical laminates is theoretically studied in detail. The 
dispersion of Lamb waves was studied for 10 symmetric and asymmetric modes. It is shown that 
only fundamental modes are not characterized by a cutoff frequency, which indicates the interaction 
of fundamental modes with composite layers in the low-frequency range. 
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Introduction. 

Non-destructive testing [1, 2] and structural health monitoring [3, 4] have 

traditionally been the two main wavelet transform methods for assessing the integrity 

and degradation of composite systems widely used in construction. Implementation 

of an active diagnostic procedure that uses ultrasonic waves to detect damage, 

localize and subsequently evaluate damage involves understanding the propagation 

characteristics of these waves in composites. 

Factors that influence the speed of wave mode propagation include the laminate 

laying features, wave direction, frequency and interface conditions. The dependence 

of the wave front speed on frequency leads to the need for a detailed study of the 

dispersion properties of directed waves propagating along the plane of an elastic 

composite plate with boundaries free from mechanical stress (Lamb waves). 

As a rule, the direction of waves in laminar composites is classified by 

polarization perpendicular to the composite plate (symmetric S waves, antisymmetric 
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A waves) and parallel to the plate (shear horizontal SH waves). 

For waves propagating in multilayer composites, wave interactions depend on 

the properties of the constituents, geometry, direction of propagation, frequency, and 

interfacial conditions. If the wavelengths significantly exceed the dimensions of the 

constituent composites (the diameters of the fibers and the distance between them), 

each plate can be considered as an equivalent homogeneous orthotropic or 

transversally isotropic material with an axis of symmetry parallel to the fibers. The 

study of Lamb waves (wavelet analysis) in composites [5] is most often carried out 

using two theoretical approaches, namely, exact solutions using three-dimensional 

elasticity theory and approximate solutions using plate theory.  

Saito and Okabe [6] investigated the dispersion relation of Lamb waves 

propagating in a cross-ply CFRP laminate. Using a formalism of the multi-layer 

Lamb wave model, they compared a homogeneous single-layer model and multi-

layer models. 

Liu and Huang [7] examined the effect of inclusion shapes, inclusion contents, 

inclusion elastic constants, and plate thickness on the dispersion relations and modes 

of wave propagation in inclusion-reinforced composite plates. They determined the 

dispersion relations and the modal patterns of Lamb waves using the dynamic 

stiffness matrix method. 

Orta et al. [8] introduced the new computational framework which allows to 

estimate the dispersion curves for the first nine symmetric and nine anti-symmetric 

Lamb modes. Analytically calculated dispersion curves using 5-SDT for different 

propagation directions and polar plots for selected frequency of different materials 

are compared with the results from both the semi analytical finite element method, 

and lower order shear deformation theories. 

Ma et al. [9] constructed dispersion relations using the formulas of reverberation 

rays in a three-dimensional Cartesian coordinate, and numerically solved the 

transcendental equations using an improved mode tracking method. 

Peddeti and Santhanam [10] formulated a semi-analytical finite element method 

(for the acoustoelastic problem of guided waves in weakly nonlinear elastic plates). It 
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was shown that the formulation of this method provides phase velocity dispersion 

curve results identical to the results obtained for the problem of a plate under uniaxial 

and uniform tensile stress. 

The character of the elastic waves causes that damage detection based on the 

analysis of the dynamic response of an interrogated structure becomes rather difficult 

[11, 12]. 

However, in a relatively small number of studies, dispersions of not phase, but 

group velocities of Lamb waves are considered [13 – 17].  

So, the knowledge of moduli and group velocity dispersion enables the optimal 

location of the sensors in order to detect the potential damage. 

The purpose of this work is to study the group velocity dispersion of symmetric 

and antisymmetric Lamb waves in laminar composites with different stacking 

structures.     

Analysis of Lamb wave velocity profiles. 

In general, transition waves propagating in anisotropic composites cause 

disturbances for all three displacement components. It is necessary to separately 

analyze the propagation of waves along the symmetry axes, namely, to take into 

account the splitting of S-, A- and SH-waves. The ultimate goal of the study is to 

compare the polynomial and exponential forms of the dispersion law for laminar 

composites. A Cartesian coordinate system is used in which the z-axis is perpendicular 

to the mid-plane of the composite laminate. The distance between the two outer 

surfaces of the laminate is z = ± δ /2. Let us consider the case of propagation of a 

packet of Lamb waves in the direction of δ. Each layer of the composite laminate is 

considered as a monoclinic material with a plane of symmetry (x-y). The relationship 

between mechanical stress and deformation takes the following matrix form 

kkii DGA = ,       (1) 

where A and D are the coefficients of matrices; G is the stiffness matrix. 

 Lamb waves can be considered as standing waves in the z-direction of the 

plate. The result of this assumption is a model of wave motion in the form of a 
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superposition of plane harmonic waves. Each plane harmonic wave moving in the k 

direction is represented by displacement coefficients 

{ } ( ) ( ) ( ){ } ( )[ ]tykxkizzz yx ωβββααα −+= exp,,,, 321321 ,            (2) 

where k = [kx, ky]T and its magnitude k = |k| = ω /υp = 2π/λ is the wave number; ω is 

the angular frequency; λ is the wavelength and υp is the phase velocity. In the x-y 

plane, k = k [cosη, sinη]T, where η is the direction of wave propagation. 

In an off-axis laminar composite plate, solutions to the equation of motion can be 

simply separated into symmetric and antisymmetric waves. This consideration allows 

us to write down a fairly simple analytical representation 

              zEss µβ cos,1 = , zFss µβ cos,2 = , zGss µβ cos,3 =  

zE µβ αα cos,1 = , zF µβ αα cos,2 = , zG µβ αα cos,3 =   (3) 

where µ is the variable to be determined by Lamb wave kinematics; subscripts “s” 

and “a” represent symmetric and antisymmetric modes, respectively. 

Substituting these equations into the equations of symmetrical wave motion, leads 

to an expression in matrix form  
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where the overbar denotes complex conjugation. 

 The relationship between the elements of matrix (Λ – ρω2I), stiffness matrix, 

and 3×3 identity matrix I  have a polynomial form. 

Nontrivial solutions Es, Fs and Gs in equation (3) lead to the following sixth-order 

polynomial in µ 

03
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4

1
6 =+++ eee µµµ ,                                        (5) 

where ei (i = 1,2,3) are real-valued coefficients of Gij, k, and ρω2. 
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Table 1 – Spectral profile of Lamb waves for laminate A1 (symmetric modes). 

f ′  υ′g f ′  υ′g 
S0 SH0 S1 S2 SH2 

0.5 3.325 2.384 5.0 0.962 0.001 0.001 
1.0 3.218 2.321 5.6 0.921 0.002 0.003 
1.5 3.085 2.305 6.2 0.824 1.512 1.264 
2.0 2.798 2.208 6.8 0.841 2.358 1.587 
2.5 2.237 2.126 7.4 0.935 2.857 1.698 
3.0 1.749 2.111 8.0 1.045 3.042 1.762 
4.0 0.387 1.564 8.6 1.018 3.110 1.852 
5.0 1.400 0.631 9.2 1.089 3.043 1.964 
6.0 1.310 0.735 9.5 1.088 3.002 1.993 
7.0 1.182 0.786 10.1 1.070 2.804 2.057 
8.0 1.087 0.811 10.8 0.993 2.220 2.125 
9.0 1.010 0.832 11.4 0.968 0.995 2.173 
10.0 1.000 0.846 12.0 0.970 0.484 2.186 

 

Table 2 – Spectral profile of Lamb waves for laminate A1 (asymmetric modes). 

f ′  υ′g f ′  υ′g f ′  υ′g 
A0 A1 A2 A3 SH3 

0.5 0.651 2.5 1.882 8.5 0.593 0.003 0.001 
1.0 0.847 2.9 2.456 8.6 0.612 0.227 0.001 
1.5 0.851 3.3 2.614 8.7 0.715 0.418 0.002 
2.0 0.856 3.7 2.913 8.8 0.783 0.623 0.003 
2.5 0.623 4.1 3.111 8.9 0.805 0.701 0.003 
3.0 0.678 4.5 3.152 9.0 0.890 0.862 0.004 
3.5 0.699 4.9 3.112 9.1 0.904 0.871 0.125 
4.0 0.734 5.3 3.087 9.2 0.928 0.885 0.364 
4.5 0.790 5.7 2.924 9.3 0.957 0.889 0.541 
5.0 0.802 6.1 2.631 9.4 0.981 0.896 0.683 
5.5 0.813 6.5 2.185 9.5 1.061 0.900 0.754 
6.0 0.845 6.9 1.598 9.6 1.082 0.882 0.974 
6.5 0.887 7.3 1.273 9.7 1.106 0.874 1.116 
7.0 0.902 7.7 0.832 9.8 1.125 0.856 1.277 
7.5 0.883 8.1 0.401 9.9 1.143 0.830 1.452 
8.0 0.879 8.5 0.368 10.0 1.162 0.795 1.5833 
8.5 0.872 8.9 0.420 10.1 1.175 0.791 1.986 
9.0 0.870 9.3 0.468 10.2 1.188 0.784 2.178 
9.5 0.868 9.7 0.502 10.3 1.205 0.781 2.376 
10.0 0.867 10.2 0.539 10.7 1.203 0.791 2.715 
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The simplified Lamb wave propagation model assumes ideal coupling between 

layers of the laminated composite in the z-direction. Accounting for laminate 

heterogeneity requires an exponential change in the displacement components 

( )ziE µβ exp1 = , ( )ziF µβ exp1 = , ( )ziG µβ exp1 −= .            (6) 

 

Table 3 – Spectral profile of Lamb waves for laminate A2 (asymmetric modes). 

f ′  υ′g f ′  υ′g f ′  υ′g 
A0 A1 A2 A3 SH3 

0.5 0.898 2.5 1.218 8.5 0.924 0.003 0.002 
1.0 0.898 2.9 1.530 8.6 0.895 0.008 0.164 
1.5 0.897 3.3 1.809 8.7 0.861 0.012 0.308 
2.0 0.897 3.7 2.184 8.8 0.837 0.016 0.407 
2.5 0.897 4.1 2.394 8.9 0.820 0.021 0.593 
3.0 0.896 4.5 2.426 9.0 0.815 0.028 0.699 
3.5 0.895 4.9 2.385 9.1 0.793 0.089 0.715 
4.0 0.894 5.3 2.288 9.2 0.765 0.187 0.805 
4.5 0.894 5.7 2.235 9.3 0.737 0.352 0.881 
5.0 0.893 6.1 1.980 9.4 0.718 0.605 0.973 
5.5 0.893 6.5 1.684 9.5 0.694 0.831 1.113 
6.0 0.893 6.9 1.295 9.6 0.711 0.927 1.188 
6.5 0.892 7.3 1.064 9.7 0.725 1.164 1.246 
7.0 0.892 7.7 0.845 9.8 0.740 1.235 1.358 
7.5 0.891 8.1 0.555 9.9 0.756 1.380 1.455 
8.0 0.891 8.5 0.485 10.0 0.768 1.486 1.557 
8.5 0.891 8.9 0.316 10.1 0.773 1.604 1.618 
9.0 0.890 9.3 0.484 10.2 0.791 1.728 1.735 
9.5 0.890 9.7 0.587 10.3 0.804 1.872 1.882 
10.0 0.890 10.2 0.615 10.7 0.809 1.914 1.912 

 

Spectral dependences of the dimensionless group velocity υ′g = υg/υ T for fixed 

values of the dimensionless frequency f ′ = ωδ/υ T along the θ direction of laminates A1 

and A2 are given in Tables 1 - 4. The value υT defined as (G12/ρ)0.5 is the transverse 

wave velocity in lamina (associated with shear in plane). 
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Summary and conclusions. 

Exact solutions of Lamb waves in a plate can be established on the basis of 

three-dimensional elasticity theory and subsequently extended to a laminate with an 

arbitrary structure. For symmetrical laminates, a reliable wave mode separation 

method is used. A numerical method for obtaining group velocity dispersions and 

wave curves is proposed. The dispersions and characteristic wave curves of Lamb 

waves are analyzed for two types of laminates. It was found that the A0 mode has the 

best characteristics for structural monitoring of laminar composites. The speed of 

propagation of multi-frequency components within the wave packet remains almost 

unchanged, which causes only slight deformation of the wave packet shape when 

moving in the composite layers. In addition, the significantly low attenuation of A0 

mode and high sensitivity to the growth of delamination in the sample indicate the 

practical value of using symmetric modes as a diagnostic tool. 
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