TRANSIENT DYNAMICS OF WAVE PROPAGATION IN HETEROGENEOUS COMPOSITES

Authors

DOI:

https://doi.org/10.30890/2709-1783.2024-35-00-004

Keywords:

local homogenization, composite materials, wavelet representation, multiscale reduction, wave propagation.

Abstract

This paper is devoted to the development of a local homogenization model for multiscale heterogeneous composite materials. The key approach of this model is a continuous wavelet representation of the composite material properties and the corresponding mul

References

Otero F. et al. (2015). Numerical homogenization for composite materials analysis. Comparison with other micro mechanical formulations. Composite Structures, issue 122, pp. 405-416

DOI: 10.1016/j.compstruct.2014.11.041

Terada K. et al. (2013). A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials. Computational Mechanics, issue 52, pp. 1199-1219

DOI: 10.1007/s00466-013-0872-5

Kamiński M., Pawlak A. (2014). Sensitivity and uncertainty in homogenization of the CFRP composites via Response Function Method. Composite Structures, issue 118, pp. 342-350

DOI: 10.1016/j.compstruct.2014.07.054

Chen J.S., Mahraeen S. (2004). Multi-scale modelling of heterogeneous materials with fixed and evolving microstructures, Modelling and Simulation in Materials Science and Engineering, issue 13, vol. 1, p. 95

DOI: 10.1088/0965-0393/13/1/007

Published

2024-10-30

How to Cite

Pysarenko, A. (2024). TRANSIENT DYNAMICS OF WAVE PROPAGATION IN HETEROGENEOUS COMPOSITES. SWorld-Ger Conference Proceedings, 1(gec35-00), 60–63. https://doi.org/10.30890/2709-1783.2024-35-00-004