Future in the results of modern scientific research August 2024

https://www.proconference.org/index. gec/article/view/gec34-00-008
DOI: 10.30890/2709-1783.2024-34-00-008

UDC 004.2
BOOK LIBRARY MANAGEMENT SYSTEM BASED ON CLOUD

MICROSERVICES AWS

CUCTEMA MEHEJIKMEHTY BIBJIIOTEKA KHUI' HA OCHOBI XMAPHHUX
MIKPOCEPBICIB AWS
Smetanenko A.V./ Cmeranenko A.B.
bachelor / baxanaep
ORCID: 0009-0002-8224-4086
Petro Mohyla Black Sea National University, Mykolayiv, UA
Yoprnomopcovkuii hayionanvruil yHieepcumem imeni [lempa Mozunu, v Mukonais, Ykpaina
Kulakovska 1.V. / Kynakoscbka 1.B.
c.f.m.s., as.prof. / K.¢p.m.nH., Ooy.
ORCID: 0000-0002-8432-1850
Petro Mohyla Black Sea National University, Mykolayiv, UA
Yopnomopcokuii HayionanvHuti yHieepcumem imeni [lempa Moeunu, m Mukonais, Ykpaina

Abstract. The developed system demonstrates how microservices can be integrated into a
single backend service running on the AWS cloud platform. This ensures high reliability, scalability
and security, and allows for flexible adaptation to the changing needs of users and organisations.
This system has been successfully deployed on AWS using the relevant services of the cloud
platform. The implemented code allows us to create an architecture that is easily maintained,
scalable and reusable in other projects. The use of MVC, clean architecture, and DDD ensures
modularity, clear separation of responsibilities, and ease of testing and development of the system.
Based on this project, approaches to the implementation of distributed systems can be explored.

Keywords: distribution system, AWS, Node.js, Bun, TypeScipt, Fastify, Elysiajs, Docker,
Makefile, JWT.

Anomayia. Po3pobnena cucmema OeMOHCMpPYE, 5K MIKpocepgicu Moxcyms — Oymu
inmeeposani y €0unuil Oexeno—cepsic, wo @ynkyionye na xmapriu niamgopmi AWS. Ile
3a6e3neuye 6UCOKY HAOIUHICMb, Macumabosaunicmv ma Oe3nexy, a maKoH#c 0036018€ CHYUKO
aoanmysamucs 00 3MIHHUX nomped Kopucmyeauié [opeauizayiu. Posnodinena cucmema
MeHedHcMenmy OibniomeKu KHU2 KOPUCMY8aya CKIA0AEMbCA 3 YOMUPLOX CEPIcie, AKI npayioms
V €OUHIl exocucmemi, ane peanizoeawi ik mikpocepsicu. L{s cucmema 6yna ycniuHo po3eopHyma Ha
AWS, suxopucmogyiouu 8i0nogioni cepsicu xmaproi niamgopmu. Peanizosanuii K00 00380.s5€
cmeoprogamu apximexkmypy, AKa J1e2Ko NIOMPUMYEMbCA, Macuimadosana ma modce Oymu
nepegukopucmana 6 iHwux npoexmax. Buxopucmanus MVC, yucmoi apximexmypu ma DDD
3abe3neuye MoOyIbHICMb, YimKe po30ileHHs 8I0N08i0AIbHOCHel Ma 1ecKiCMb) MeCmy8anHi ma
po3sumky cucmemu. Ha ocHnosi yvoco npoekmy MmodcHa Oocrioumu nioxoou 00 peanizayii
PO3NOOINIEHUX CUCTEM.

Kniouosi cnoea: posnooinena cucmema, AWS, Node.js, Bun, TypeScipt, Fastify, Elysiajs,
Docker, Makefile, JWT.

Introduction.
In today's world, the rapid development of technology necessitates the

implementation of innovative solutions to improve the efficiency of business

Conference proceedings 10

Future in the results of modern scientific research August 2024

processes. Distributed systems based on cloud services are becoming key elements
for ensuring reliability, scalability and security in organisations. Thanks to cloud
technologies, companies can adapt their resources to their own needs, which
significantly increases their competitiveness and the efficiency of information flow
management.

Cloud technologies provide centralised resource management, which allows
organisations to optimise infrastructure and support costs. In addition, they provide
an opportunity to quickly scale systems in response to growing needs, which is a key
factor for successful business development in today's competitive environment. Thus,
the implementation of distributed systems based on AWS (Amazon Web Services)
cloud services is becoming important for increasing the efficiency, reliability and
security of organisations.

Main text

The goal of building this system was to create a distributed architecture
consisting of three separate microservices that interact with each other through
different protocols. Each microservice is responsible for a specific part of the
system's functionality, which ensures flexibility, scalability and reliability.

The overall architecture of the system includes an authentication service that is
private and provides user authentication and authorisation, a user management
service that is responsible for managing user information and uses the authentication
service to verify authentication, and a book management service that is responsible
for managing book information and interacts with other services via HTTP and
Amazon [2].

To organise the code in the project, we created our own structure and
architecture supporting the MVC (Model-View-Controller) pattern, Clean
Architecture [3] and Domain-Driven Design (DDD) [2]. These approaches were
chosen to create an architecture that can be easily reused across projects, ensuring
modularity, scalability and maintainability.

Basic principles:

- MVC (Model-View-Controller): provides a clear separation of the application

Conference proceedings 11

Future in the results of modern scientific research August 2024

container-main

request

v -

replies with a response

response

container-process

i co- AR Mapinracpes
faplipa process . 8082/api/process

Y
™
lm

. communicates with :
Client) responds with a message
container-process

1 T N = | .|
4 3
container-consume

I’E{ILI'EST. I/ 20280/apifsend-message http:ficonsume: 20281

3080/api'send-message ttpfconsume 803
sends a message to SQS SQs consumes the messages

queue
-

response

Figure 1 - Example of microservices organisation

= plot

m puild

m deployment

m hurl

m migrations

® Src
m entities
m http
m infra
m repositories
m services

run.ts

Makefile
README . md
biome. json

* bun.lockb
drizzle.config.ts

package. json

tsconfig.json

Figure 2 - Code structure and architecture

logic into three main components: model, view, and controller. This helps to separate
responsibilities and simplify the maintenance and development of the application;

- Clean Architecture: aims to ensure independence from frameworks, easy
testing, and increased system flexibility. It involves dividing the system into several

layers, each of which is responsible for its own part of the functionality;

Conference proceedings 12

Future in the results of modern scientific research August 2024

- DDD (Domain-Driven Design): Domain-driven design focuses on creating a
system that reflects business logic and requirements. This is achieved through the use
of domain models, aggregates, repositories and other DDD concepts.

This code organisation allows you to create an architecture that is easy to
maintain, scalable and reusable in other projects. The use of MVC, clean architecture
and DDD ensures modularity, clear separation of responsibilities and ease of testing
and development of the system.

The main technologies chosen to implement the microservice architecture are:
Node.js for its asynchronous nature, high performance and a large ecosystem of
modules; Bun for its high speed of JavaScript code execution and built-in tools for
testing and packaging; TypeScript for static typing, which allows detecting errors at
the compilation stage and supports modern JavaScript standards; Docker for
environment isolation, which makes applications portable and independent of the

environment, and simplifies the process of deploying and updating applications.

@ README. nd

bur

Figure 3 - Developed application structure and architecture

The result of the study is a designed and implemented distributed system based
on AWS cloud services that will take into account the advantages and disadvantages
of existing solutions on the market and meet the needs of users, ensuring reliability,

scalability and security.

Conference proceedings 13

Future in the results of modern scientific research August 2024

Containers

Figure 4 - An example of a local launch of a distributed system

The result is a distributed system with three microservices for the book
application, which includes an authorisation and authentication service, a user
management service, and a book management service.

All these technologies ensure the creation of a flexible, scalable, and easily
maintained system. To organise the code in the project, we chose the mono-
repository approach, which allows all services to be stored in one repository and
simplifies the development, maintenance, and deployment processes.

Summary and conclusions.

The processes of designing and implementing a distributed system based on
cloud services are considered. The methods and technologies used to create a
distributed system based on cloud services ensure reliability, scalability and security.
We analysed and selected a technology stack for building a microservices system
consisting of three servers that interact via different protocols and are written on
different frameworks and runtime environments. All servers are based on AWS,

which ensures scalability, security and reliability of the system.

JlirepaTtypa:
1. Newman S. Building Microservices. O'Reilly Media, 2015. 280 p. (accessed
01.03.2024).

Conference proceedings 14

Future in the results of modern scientific research August 2024

2. Amazon Web Services (AWS). Official AWS documentation. URL:
https://aws.amazon.com (accessed 01.10.2023).

3. Sbarski P. Serverless Architectures on AWS. Manning Publications, 2017.
320 p. (accessed 20.04.2024).

Te3wu BianpanieHo: 26.08.2024 r.

© Cwmeranenko A.B., Kynakosceka [.B..

Conference proceedings 15

